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Abstract. In this paper, we apply Büttiker’s gauge invariant, charge conservation, nonlinear transport
theory to explore the spin-polarized tunneling of ferromagnet/insulator (semiconductor) single and double
junctions. The Green function of spin-polarized tunneling is calculated by the tight-binding approximation
method. The energy and the angle (between the molecular field and the vertical axis) dependences of
the weakly nonlinear dc transport coefficient and the linear low frequency ac transport coefficient are
investigated. The ac tunneling magnetoresistance is also discussed.

PACS. 75.70.Cn Interfacial magnetic properties (multilayers, magnetic quantum wells, superlattices,
magnetic heterostructures) – 73.40.Rw Metal-insulator-metal structures – 73.23.Hk Coulomb blockade;
single-electron tunneling

1 Introduction

Recently, the spin-polarized tunneling through ferromag-
net/insulator (semiconductor)/ferromagnet (FM/I(S)/
FM) junction has attracted much more attention [1–4].
Several experiments have been done to measure the
tunneling conductance and magnetoresistance of the
FM/I(S)/FM junctions. Not only the spin-polarized tun-
neling has prospective use as high-density, nonvolatile
storage media or as a field sensor, but also it play an
important role in the study of giant magnetoresistance
(GMR) effect of multilayers. In 1989, Slonczewski [5] pro-
posed a free electron model to analyze the transmission of
charge and spin currents flowing through a nonmagnetic
electron tunneling barrier separating two ferromagnetic
conductors. Following this model, Zhang et al. [6,7] fur-
ther studied the tunneling through ferromagnet/insulator
(semiconductor) single and double junctions subject to a
dc bias. Based on Landauer-Büttiker formalism, Bauer [8]
presented a perpendicular transport theory for the metal-
lic multilayers. In the absence of spin-flip relaxation pro-
cess, it unities the different results of previous approaches.
They also applied it to discuss the magnetoresistance of
antiferromagnetically coupled magnetic multilayers. Be-
sides the ferromagnet/insulator/ferromagnet junction, the
ferromagnet/normal metal/ferromagnet junction is also
explored. Inspired by the circuit theory of Andreev reflec-
tion, Brataas et al. [9] formulate a finite-element trans-
port theory for spin transport in a ferromagnet-normal
metal system. In the presence of ferromagnetic order, a
contact can be described by four conductance parame-
ters. This theory considerably simplifies the calculation of
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transport properties of complicated ferromagnet-normal
metal system.

However, the known spin tunneling models [5–7]
are based on the free electron approximation, in which
electron-electron correlations due to long ranged Coulom-
bic interaction are not taken into account. When the
external bias is varied, the time dependence of internal
electric potential which originates from electron-electron
interactions will induce a displacement current. Therefore,
the total current in time dependent transport should be
composed of two parts, namely, the displacement current
and the particle current. It is this total current to count
experiments, not just the particle current. Since electron-
electron correlations in the free electron approximation are
neglected, the displacement current is omitted and only is
the particle current calculated in these theories such that
the gauge invariance and current conservation, which are
fundamental requirements of the physical principles, may
not be kept. The nonlinear effect on spin-polarized tun-
neling problems considered in previous models is clearly
incorrect because those theories do not obey the gauge in-
variance. On the other hand, the theories proposed to ex-
plain the experimental results only deal with the dc trans-
port of spin-dependent transmission. It is clear that the
research on ac properties of spin-dependent transport is
very important both in application and in fundamental
sense, while there are few researchers to pay attention to
the problem of the spin-polarized tunneling with ac bias.

Büttiker and coworkers [10–12] proposed a trans-
port theory in the frame of the scattering matrix ap-
proach to explain both the dc and ac electrical con-
ductance in mesoscopic systems. In their formalism,
the conservation of the overall charge and current as well
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as the invariance under a global voltage shift (gauge in-
variance) are emphasized. In this paper, we shall extend
Büttiker′s formalism to the case in which the spin degree
of freedom is stressed, and apply the theory to spin polar-
ized tunneling of ferromagnet/insulator (semiconductor)
single and double junctions. Because a general time depen-
dent nonlinear transport problem is very difficult to han-
dle, we only consider the weakly nonlinear dc-transport
and linear low frequency spin-polarized tunneling trans-
port. The Green function needed in the spin-polarized
tunneling transport theory is calculated by use of the
tight-binding approximation method (or the method of
finite difference) [13]. The basic formalism concerning the
weakly nonlinear dc and linear low frequency conductance
of tunneling junctions are described in Section 2. In Sec-
tion 3, we shall present our numerical analyses on the tun-
neling of FM/I(S) single and double junctions. Finally, a
brief summary is given in Section 4.

2 Formalism

Consider FM/I(S)/.../FM/.../I(S)/FM multilayers which
are connected by two electron reservoirs at contacts α =
1, 2 with voltage Vα. We will use Büttiker’s scattering
approach to investigate this system. Büttiker’s scattering
approach has been successfully applied to many interest-
ing mesoscopic systems [14–19]. The salient point of this
theory is the conservation of the overall charge and cur-
rent as well as the invariance under a global voltage shift
(gauge invariance). The transport properties of the sys-
tem are described by the scattering matrix Sαsβs′ which
relates the outgoing current amplitude at contact α with
spin s to the incident current amplitude at contact β with
spin s′. According to Büttiker’s approach [10–12], the elec-
tric current through contact α is given by

Iα =
2e
h

N∑
β=1

∫
dEf(E −EF − eVβ)

∑
s,s′

Aαs,βs′(E), (1)

where f(z) = [1 + exp(z/kBT )]−1 is the Fermi function,
and Aαs,βs′(E) = δαβδss′ − S+

αs,βs′(E)Sαs,βs′(E). To ob-
tain weakly nonlinear transport, equation (1) is expanded
with respect to the voltage Vα as

Iα =
∑
β

Gαβ(0)Vβ +
∑
βγ

Gαβγ(0)VβVγ + · · · , (2)

where the linear coefficient is defined as

Gαβ(0) =
e2

h

∫
dE(−∂Ef)

∑
s,s′

Aαs,βs′(E), (3)

and the weakly nonlinear coefficient is

Gαβγ(0) =
e3

h

∫
dE(−∂Ef)

×
∑
s,s′

∫
dx
δAαs,βs′(E)
δeU(x)

(2uγ(x) − δβγ), (4)

with

δAαsβt
δeU(x)

= −
(
S†αsβt

δSαsβt
δeU(x)

+
δS†αsβt
δeU(x)

Sαsβt

)
, (5)

U(x) is the internal electric potential, and uγ(x) is
the characteristic potential determined by the following
Poisson equation

−∂xxuα(x) + 4πe2

∫
dx′Π(x, x′)uα(x′) = 4πe2 dnα(x)

dE
·

(6)

Here, we note that the spin degree of freedom does not
explicitly appear in equation (6), so the formalism for
the weakly nonlinear transport and the low frequency ac
transport with spin will be formally the same as that
without spin, although Green′s function and the scatter-
ing matrix are spin dependent. In equation (6), dnα(x)

dE =∑
β

dnαβ(x)
dE and

dnαβ(x)
dE

= − 1
4πi

∑
st

(
S†αs,βt

δSαs,βt
δU(x)

−
δS†αs,βt
δU(x)

Sαs,βt

)
(7)

is the partial local density of states. The sum over all
contacts α, β gives the local density of states dn(x)/dE.
Π(x, x′) is the Lindhard polarization function which can
be simplified in the Thomas-Fermi approximation as

Π(x, x′) =
dn(x)

dE
δ(x− x′). (8)

If the quasi-neutrality condition is used, the characteristic
equation becomes an algebra equation

uα(x) =
dnα(x)

dE
/

dn(x)
dE

, (9)

which is reasonable if the characteristic potential is a
slowly varying function of coordinates. We shall assume
it for convenience in our subsequent calculation.

According to the Fisher-Lee relation, the scattering
matrix with spin polarization can be expressed by Green’s
function Gσσ′(x, x′) as

Sασ,βσ′ = −δαβδσσ′ + i
√
vαvβGσσ′(xα, xβ), (10)

where v = 1
~
∂E
∂k , k is the wave vector. Substituting the

above equation into the partial local density of states, we
can express it as

dnαβ(x)
dE

= −
√
vαvβ

4π

×
∑
st

(
S†αs,βt

δGst(xα, xβ)
δU(x)

+
δG†st(xα, xβ)

δU(x)
Sαs,βt

)
.

(11)
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E −Hc −Σ =

0
BBBBB@

E − α1 −Σ1 −β1 0 0 0 0
−β1 E − α2 −β2 0 0 0

0 −β2 · · · · · · 0 0
0 0 · · · · · · −βn−2 0
0 0 0 −βn−2 E − αn−1 −βn−1

0 0 0 0 −βn−1 E − αn −Σ2

1
CCCCCA
, (18)

Besides, according to the definition of Green’s function
one can prove the following identity

δGst(xα, xβ)
δU(x)

=
∑
m

Gsm(xα, x)Gmt(x, xβ). (12)

Applying this relation to equation (11), we finally obtain

dnαβ(x)
dE

=−
√
vαvβ

4π

∑
st,m

[
S†αs,βtGsm(xα, x)Gmt(x, xβ)

+ (Gsm(xα, x)Gmt(x, xβ))†Sαs,βt

]
. (13)

Hence, if we know Green’s function of the system, we can
calculate the weakly nonlinear coefficients based on equa-
tions (3, 4, 9, 10, 13).

In the above expression, the weakly linear and non-
linear coefficient Gαβ(0) and Gαβγ(0) take values at zero
frequency, which corresponds to the dc transport. In the ac
case, we should consider the admittance matrix Gαβ(ω) =
δIα/δVβ , which represents the linear response of the cur-
rent δIα through contact α for a small voltage oscillation
in reservoir β. For low frequency case, it can be further
simplified as

Gαβ(ω) = Gαβ(0)− iωEαβ , (14)

where Eαβ is the emittance matrix. By using the par-
tial local density of states and characteristic potential, the
emittance has the following expression

Eαβ = e2

(
dNα,β

dE
−
∫

dx
dnα(x)

dE
uβ(x)

)
, (15)

where

dNαβ
dE

=
∫

dx
dnα,β(x)

dE
(16)

is the space integral of partial local density of states.
The correlation of interaction to a charge particle with

spin includes two categories: the charge-charge correlation
and the spin-spin correlation. The charge-charge interac-
tion in Büttiker’s theory is considered through Hartree ap-
proximation and Poisson equation by which the displace-
ment current is induced, which assures the conservation
of current and gauge invariance. The spin-spin interaction
is approximated by an effective magnetic field (i.e. the
molecular field), which originates from the average of spin-
spin interactions, and the spin screening is approximately
contained in the molecular field that felt by a single spin.

This approximation is also adopted in Slonczewski’s the-
ory, which can be used to handle the spin transport prob-
lem well. As the spin indices appeared in the Poisson equa-
tion are summed over, we think in this sense that spins
also contribute to the displacement current. The spin-spin
interaction leads to the exchange coupling and the spin
current. In the presence of voltage V , there will be along
with the electricity flowing through the barrier and energy
dissipation. In reality, the spin-orbit and dipolar process
internal to the magnet will cause magnetic order param-
eter relax very rapidly toward equilibrium. However, the
purpose of this paper is to study the dc and ac conser-
vative electric current (particle current and displacement
current) originated from electron-electron interaction in
the tunneling junction, so we shall not address the sub-
ject of exchange coupling and spin current in this paper,
which we will discuss in future papers.

In order to calculate Green’s function in equation (13),
the tight-binding approximation method (or the method
of finite difference) [13] is adopted in our treatment. In
this way, if we choose a discrete lattice whose points are
located at x = ja, j being an integer (j = 1 · · ·N), then
Green’s function with spin can be expressed as

G = (E −Hc −Σ)−1 (17)

where Hc is the Hamiltonian of the isolated system, and
Σ is the self-energy which comes from the contribution of
the leads. In real space, the matrix E − Hc − Σ can be
expressed as

See equation (18) above

where βi = −tI, t = ~2/2ma2 (a is the lattice spacing),

αj = 2tI + Mj , I =
(

1 0
0 1

)
and Mj is the spin depen-

dent potential. If U(x) is the electrostatic potential in the
system and h(x) = (h1(x), h2(x), h3(x)) is the molecular
field in the ferromagnet, then the matrix Mj can be ex-
pressed as

Mj =
(
U(ja) 0

0 U(ja)

)
+
(

h3(ja) h1(ja)− ih2(ja)
h1(ja)− ih2(ja) −h3(ja)

)
. (19)

In our model, the contribution to the self-energy is from
the two leads [13]. If we assume that the two leads have
the same polarization direction, the self-energy terms in
matrix form can be written as follows:

Σ1 = Σ2 =
(
−t exp(ik↑a) 0

0 −t exp(ik↓a)

)
(20)
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Fig. 1. The structures of single (a) and double (b) tunneling
junctions.

where the wave vectors k↑,↓ are determined by the disper-
sion relation E ∓ h0 = 2t(1 − cos k↑,↓a), where h0 is the
polarized molecular field in the leads. If the spin polariza-
tion direction in two leads differs by an angle θ0, the self
energy Σ1 and Σ2 have the form of

Σ1 =
(
−t exp(ik↑a) 0

0 −t exp(ik↓a)

)
,

Σ2 = <
(
−t exp(ik↑a) 0

0 −t exp(ik↓a)

)
<†, (21)

where the rotation matrix < is

< =

(
cos(θ0/2) sin(θ0/2)

− sin(θ0/2) cos(θ0/2)

)
. (22)

Clearly, once we obtain Green’s function from the tight-
binding approximation, we can calculate the weakly non-
linear coefficient and low frequency emittance coefficient
by equations (4) and (15).

3 Numerical analysis

Take Fe/Al2O3(MgO)/Fe single junction and Fe/Al2O3

(MgO)/Fe/Al2O3(MgO)/Fe double junction in Figure 1
as example. Let us calculate the tunneling coefficients of
weakly nonlinear dc-transport and linear low frequency
ac transport. For convenience, we neglect the difference
of electron effective masses in barriers and ferromagnets,
and treat them as the bare electron mass me.

We have assumed that the molecular field are zero
(thus θ0 = 0) in the leads in order that the self-energy
terms are simplified. In order to ensure the validity of re-
sults, we have numerically checked the unitary properties
of the scattering matrix as well as the consistency of the
total density of states from two methods, namely the cur-
rent conservation and the gauge invariance condition.

Fig. 2. The emittance coefficient and the transmission (inset)
of single junction vs. energy, where θ = π/5, the amplitude of
the molecular field is taken to be 9.0 Ry , and U = 0.2 Ry.

3.1 Single junction

Consider a single junction (e.g. Fe/Al2O3(MgO)/Fe)
whose structure is depicted in Figure 1a.

We take the width of left and right Fe layers to be
2.0 nm and 6.0 nm, respectively, and the width of the
Al2O3(MgO) layer to be 4.0 nm. For the sake of simplicity,
the magnitude of the molecular field h in both Fe layers
is assumed to be 9.0 Ry, and the barrier height in the
insulator is supposed to be 0.2 Ry.

With these given conditions, we obtained the trans-
mission coefficient defined by T = Σs,t|S1s,2t|2 and the
low frequency emittance coefficient E11 as a function of
electron energy E when the direction of the molecular
field h in the right Fe layer is assumed to deviate from
the y-axis by an angle θ = π/5, as shown in Figure 2. It
can be seen that E11 has sharp resonant peaks at certain
energies 0.7 Ry, 2.0 Ry, 4.1 Ry and so on, which is the
quantum-mechanical characteristics of the single-electron
tunneling, and it is almost vanishing at energies away from
the resonant points. The transmission coefficient T oscil-
lates with energy and it also has sharp resonant peaks at
the same energies. We noted that the value of T is mainly
controlled by the height of the barrier. If we lower the
barrier, T could exceed 1 but smaller than 2. When we
adopt a small barrier (0.2 Ry) and a large molecular field
in the ferromagnet (9.0 Ry), we will obtain a resonance
tunneling structure shown in Figure 2. In this resonance
case, the curve contains sharp peaks obviously. If the bar-
rier and the molecular field deviate slightly from the data
used above, the sharp peaks get broadened and smeared,
and the curves with more small peaks become irregular
compared to those in the resonant structure. The number
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Fig. 3. The second weakly nonlinear coefficient of single junc-
tion vs. energy, where θ = π/5, the amplitude of the molecular
field is taken to be 9.0 Ry, and U = 0.2 Ry.

of the peaks is mainly affected by the width of the barrier.
A larger width of the barrier will cause more sharp peaks
in the curve. When we choose the insulator barrier to be
4.0 Ry and the magnitude of the molecular field in the two
ferromagnets to be 0.2 Ry, we found another resonance
structure in which much more sharp peaks appear. In this
latter structure, with increasing energy the amplitude of
the peaks of the transmission T is also increasing, and
the emittance coefficient is nearly always negative, which
indicates that the junction have good transmissions. In
the above case, we considered an asymmetric structure in
the sense that the magnitude of the molecular field or the
width of the ferromagnetic layer in the right is different
from that in the left. However, if we adopt a symmetric
structure, i.e., both ferromagnets are the same, we see
that the resonance phenomenon becomes more apparent,
and the shapes of the emittance peaks at resonant points
also become symmetric.

The second-order weakly nonlinear coefficient as a
function of energy is presented in Figure 3. As a rec-
tification coefficient, the second-order weakly nonlinear
conductance is small compared with the transmission co-
efficient, and it shows sharp peaks at energies 0.7 Ry,
2.0 Ry, 4.1 Ry and so on which just correspond to the
energies at the resonant points of the transmission coef-
ficient. Away from these resonant points, G111 is almost
vanishing. From the figure it can be observed that the
amplitudes of the resonances are small at 0.7 and 2.0 Ry,
but the resonant amplitude at 4.1 Ry is about 4 times
greater than the other two, showing the dominance of the
nonlinear effect at this specific energy. Owing to the re-
quirement of current conservation and gauge invariance,
the second-order nonlinear conductance should identically
vanish in the symmetric case because it is antisymmetric
when exchanging the indices. If we choose the molecular
field and the width of the ferromagnets in the left and
right to be the same (i.e., a symmetric case) in our nu-

Fig. 4. The emittance coefficient of single junction vs. angle
θ at energies 2.2 Ry, 2.5 Ry, 2.8 Ry.

merical computation, the second-order nonlinear conduc-
tance is indeed zero, which confirms the correctness of our
method. Besides, for an asymmetric case in which there
are different molecular fields or widths in the left and right
ferromagnets, we observed that the second-order nonlin-
ear conductance is not zero, and exhibits resonant peaks
at energies 0.7 Ry, 2.0 Ry, 4.1 Ry and so on. The height of
the resonance peak is mainly affected by the magnitude of
the molecular field, and the number of peaks is also con-
trolled by the width of the ferromagnets. Certainly, the
height and width of the insulator barrier also have some
effects on the second-order nonlinear coefficient like on the
emittance coefficient. According to the current conserva-
tion and gauge invariance condition, if we transpose the
asymmetric left and right ferromagnet in the junction, the
second-order weakly nonlinear coefficient should be anti-
symmetric, which is supported by our numerical results.
Note that the curves of G111 in the two (i.e. untrans-
posed and transposed) asymmetric cases are symmetric
about the energy axis. However, this observation is not
suitable to the emittance coefficient which dose not al-
ter if transposed. The emittance coefficient also possesses
more obvious resonance peaks in the symmetric case than
in the asymmetric case, and it is certainly nonzero in the
symmetric case.

Figures 4 and 5 show the low frequency emittance co-
efficient and the second-order weakly nonlinear coefficient
in single junction as a function of angle θ which deter-
mines the direction of the molecular field. In each figure,
we plot three different curves for energies 2.2 Ry, 2.8 Ry,
2.5 Ry which correspond to the energies at the bottom,
the top and the point between the top and the bottom,
respectively. The variation tendency of the curves with θ
is different for different energies, which is due to the differ-
ent reflection coefficients at these energies. E11 has a deep
ditch around θ ≈ 3π/5 at energy 2.2 Ry. With increasing
energy, the ditch is gradually smeared out and becomes
a bit flat, and when the energy is greater than 2.8 Ry,
E11 becomes a monotonically increasing function of θ.
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Fig. 5. The second weakly nonlinear coefficient of single junc-
tion vs. angle θ at energies 2.2 Ry, 2.5 Ry, 2.8 Ry.

The curve which has relatively small value corresponds to
the case with a small reflection coefficient in Figure 4.G111

as a function of θ has one small peak around θ = 0.4π and
one sharp peak around θ = 0.7π at energy 2.2 Ry. With
increasing energy, the small peak get broadened and the
sharp peak becomes a round ditch. At the energy greater
than 2.8 Ry, the small peak get more round and the ditch
disappears for θ ≤ π. In the resonant structure case, both
the weakly nonlinear coefficient and the emittance coef-
ficient vary with θ obviously. If we change the molecular
field in ferromagnets or the height of the barrier slightly
away from this resonance point, the variation with θ will
become slower compared with the resonance case. When
we choose the molecular field in the left and right ferro-
magnets very small (0.2 Ry), and the height of the insu-
lator barrier larger (1.3 Ry), the variation of the weakly
nonlinear coefficient G111 and the emittance coefficient
E11 are very slight. In the asymmetric structure case in
which the left and right ferromagnets have different widths
or molecular fields, the nonlinear coefficient varies obvi-
ously. If we exchange the asymmetric left and right fer-
romagnets, then the curves will be symmetric about the
θ axis in the two cases due to the current conservation
and gauge invariance condition. However, the emittance
coefficient varies more obviously with θ in the symmetric
structure than in the asymmetric case.

3.2 Double junction

Let us now consider a double junction (e.g.
Fe/Al2O3(MgO)/Fe/Al2O3(MgO)/Fe) whose struc-
ture is shown in Figure 1b. We assume that the widths of
the first, second and third Fe layers are 2.0 nm, 2.0 nm
and 5.0 nm, respectively, and the widths of the first and
the second Al2O3(MgO) layer are 4.0 nm and 4.0 nm,
respectively. The magnitude of the molecular field h in
the ferromagnet is taken to be 9.0 Ry, and the barrier
height in the insulator is supposed to be 0.2 Ry.

Fig. 6. The emittance coefficient and the transmission (inset)
of double junction vs. energy, where θ = π/5, the amplitude of
the molecular field is taken to be 9.0 Ry, and U = 0.2 Ry.

Fig. 7. The second weakly nonlinear coefficient of double junc-
tion vs. energy, where θ = π/5, the amplitude of the molecular
field is taken to be 9.0 Ry, and U = 0.2 Ry.

For the double junction, we calculated the low fre-
quency emittance coefficient and the second-order weakly
nonlinear coefficient as a function of energy when the di-
rection angle of the molecular field in the right ferromag-
net is assumed to be θ = π/5. The results are shown in
Figures 6 and 7, respectively. It is seen that the weakly
nonlinear coefficient, the emittance coefficient and the
transmission as a function of energy are generally similar
to those in the single junction case, but they have more
peaks than in the single junction, which means that more
resonances may appear in the double junction. Apart from
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Fig. 8. The emittance coefficient of double junction vs. angle
θ at energy 1.9 Ry.

this difference, E11 has a more sharp resonance peak at
E ∼ 0.7 Ry whose amplitude is about twice greater than
that in the single junction, while the peak at E ∼ 2.0 Ry is
just about twice smaller than that in the single junction.
The transmission coefficient exhibits resonance peaks at
energies 0.5 Ry, 0.7 Ry, 2.0 Ry, 4.1 Ry and so on, which
is quite similar to the result in the single junction. In ad-
dition, it is surprising to see that G111 has a ditch at
E ∼ 0.7 Ry but in the single junction it is a peak at the
same energy, and also, G111 has a very sharp peak at
E ∼ 2.0 Ry but in the single junction it is a small ditch at
the corresponding energy. The resonances at E ∼ 4.1 Ry
are comparable for both kind of junctions. The second-
order weakly nonlinear coefficient and the emittance co-
efficient show resonance peaks at the same energies as for
the transmission coefficient. If we alter either the barrier
height, the molecular field or the width of the junction, the
curves will vary like in the single junction case. The varia-
tion of the emittance coefficient and the weakly nonlinear
coefficient with θ are shown in Figures 8 and 9, respec-
tively. At E = 1.9 Ry, E11 increases with θ and reaches
to a maximum around θ = 2π/5 and then decreases till
θ = π, while at the same energy G111 increases with θ and
quickly reaches to a small maximum around θ = 0.1π and
then decreases to zero around θ = π/2. For θ ∈ [π/2, π],
G111 is identically vanishing. It is obvious that the weakly
nonlinear coefficient (though small) and the emittance co-
efficient are strongly dependent on the direction of the
molecular field in the right ferromagnetic layer. Besides,
we noted that the values of G111 and E11 are mainly af-
fected by a proper combination of parameters (i.e. the
magnitudes of the molecular fields and the widths of the
ferromagnetic layers, the widths and the height of the in-
sulating barrier) which gives the resonant structure. If the
parameters deviate from the resonant structure, G111 and
E11 become smaller.

In Figures 6 and 7, we have assumed that the molecu-
lar fields in the first and second ferromagnets are aligned
along the y-axis, and the angle between the y-axis and the

Fig. 9. The second weakly nonlinear coefficient of double junc-
tion vs. angle θ at energy 1.9 Ry.

molecular field in the third ferromagnet is fixed as π/5.
However, if we let the molecular field in the second ferro-
magnet have an angle π/5 from the y-axis, and the first
and third molecular fields are parallel to the y-axis, the
curves of the emittance coefficient and the weakly non-
linear coefficient just have a little change compared with
the curves in Figures 6 and 7. It appears that they do
not depend obviously on in which ferromagnet the direc-
tion of the molecular field deviates from the y-axis. In
this case, if we set the width of the third ferromagnet to
be the same as that of the first and the second ferromag-
nets (2 nm), and the angle θ is in the second ferromagnet,
namely, this structure is symmetric in geometry but is
not symmetric in whole because of the aligned molecu-
lar field in the second ferromagnet, we will see that the
second weakly nonlinear coefficient is nearly zero, which
means that the asymmetry caused by the aligned angle of
the molecular field is weak, and contributes very small to
the second-order weakly nonlinear coefficient. This case is
similar to the case in which we choose the aligned angle
in the third ferromagnet. When the molecular field in the
first ferromagnet is parallel to the y-axis, but in the sec-
ond ferromagnet it is antiparallel to the y-axis, and the
aligned angle (π/5) is assumed in the third ferromagnet,
we observed that both the transmission and the second
weakly nonlinear coefficient are very small in magnitude
compared with those in Figures 6 and 7. In this case, it
is not easy for transmitting. Moreover, there is another
resonant structure caused by the barrier in the insulator.
When we chose the molecular field in the first, second and
third ferromagnets very small (0.2 Ry), and the barrier in
the insulator relatively large (1.2 Ry), that will form an-
other resonant structure, we found that the transmission
coefficient oscillates obviously, and has an increasing ten-
dency with energy, whose maximums can approach 2. The
emittance coefficient and the weakly nonlinear coefficient
also have their own resonant peaks.
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Fig. 10. The real part and the imaginary part (inset) of ac
tunneling magnetoresistance GM11(θ, ω) of single junction vs.
energy, where θ = π/5, ω = 1 Hz.

3.3 AC tunneling magnetoresistance

The AC tunneling magnetoresistance can be defined as

usual as: GMαβ(θ, ω) =
G↑↑αβ(ω)−Gθαβ(ω)

G↑↑αβ(ω)
, which is a function

of θ and frequency ω, where θ is the angle between the
molecular fields in two different magnetic layers. Gener-
ally, GM11(θ, ω) is complex. In Figure 10, we present the
tunneling magnetoresistance GM11(θ, ω) defined above as a
function of energy E for a single junction at θ = π/5 and
ω = 1 Hz. It is seen that the imaginary part of TMR is
very small. At the resonance points 0.6 Ry, 2.0 Ry, 4.1 Ry,
and so on, GM11(θ, ω) approaches its maximum values. For
other θ and ω, we observed a similar structure of curves
besides slight changes of the magnitudes. GM11(θ, ω) as a
function of energy for a double junction is given in Fig-
ure 11. One may see that the curves show a very similar
structure as that in the single junction except a small peak
appeared at energy 3.0 Ry. We also studied the variation of
the tunneling magnetoresistance GM11(θ, ω) for single and
double junctions with θ, and the results are shown in Fig-
ures 12 and 13, respectively. For a single junction, at given
energy 2.8 Ry and ω = 1 Hz we found that the curves of
the real and imaginary parts of GM11(θ, ω) have a similar
structure in shape, namely, with increasing θ it decreases
from zero and arrives at a round minimum and then in-
creases to a maximum. For a double junction, at energy
1.9 Ry and ω = 1 Hz the real part of GM11(θ, ω) increases
with increasing θ, and finally saturates around θ = π,
while the imaginary part first increases with increasing θ
and reaches to a maximum and then decreases. For both
junctions the real part of GM11(θ, ω) is about two orders

Fig. 11. The real part and the imaginary part (inset) of the ac
tunneling magnetoresistance GM11(θ, ω) of double junction vs.
energy, where θ = π/5, ω = 1 Hz.

Fig. 12. The real part and the imaginary part (inset) of the
ac tunneling magnetoresistance GM11(θ, ω) of single junction vs.
θ, where E = 2.8 Ry, ω = 1 Hz.

larger than the imaginary part. By definition, GM11(θ, ω)
as a function of θ has a close relationship with the emit-
tance coefficient, and the behaviors of the latter determine
ones of the former. Furthermore, we noted that different
energies generate different behaviors, and with increasing
frequency GM11(θ, ω) is almost linearly decreasing at given
energy and θ.
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Fig. 13. The real part and the imaginary part (inset) of the ac
tunneling magnetoresistance GM11(θ, ω) of double junction vs.
θ, where E = 1.9 Ry, ω = 1 Hz.

4 Summary

Based on Büttiker gauge invariant, charge conservation,
nonlinear transport theory, we have studied the weakly
nonlinear dc transport coefficient and the linear low
frequency transport coefficient for spin polarized tunnel-
ing of ferromagnet/insulator(semiconductor) single and
double junctions. Both the nonlinear coefficient and the
emittance coefficient as a function of energy and the
aligned angle θ of the molecular fields in ferromagnetic
layers are explored in many cases such as changing
the lengths of ferromagnet and insulator layers, the
height of the barrier, the magnitudes of the molecular
field, etc. We have observed that the variation of the
two coefficients are mainly determined by the resonant
structure. The symmetric and asymmetric structures
also have obvious influences on them, and the double
junction is affected more than the single junction. Fi-
nally, we discussed the ac tunneling magnetoresistance
for the single and double junctions. In our model, some

important factors such as the crystal potential, spin waves,
inelastic tunnelings, the difference of the electron effec-
tive masses in ferromagnets and insulator, and so on are
not considered. The Green function for the spin-polarized
tunneling is obtained by the tight-binding approximation,
which could be further improved by other methods. On
the other hand, our discussion is only limited to zero tem-
perature. How to extend our consideration to finite tem-
perature is an open question, which will be left for study
in future.

This work is supported in part by NSFC, Climbing Project
of China, and State Key Project for Fundamental Research of
China.
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